Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38562769

RESUMO

Racial disparities in triple-negative breast cancer (TNBC) outcomes have been reported. However, the biological mechanisms underlying these disparities remain unclear. We integrated imaging mass cytometry and spatial transcriptomics, to characterize the tumor microenvironment (TME) of African American (AA) and European American (EA) patients with TNBC. The TME in AA patients was characterized by interactions between endothelial cells, macrophages, and mesenchymal-like cells, which were associated with poor patient survival. In contrast, the EA TNBC-associated niche is enriched in T-cells and neutrophils suggestive of an exhaustion and suppression of otherwise active T cell responses. Ligand-receptor and pathway analyses of race-associated niches found AA TNBC to be immune cold and hence immunotherapy resistant tumors, and EA TNBC as inflamed tumors that evolved a distinctive immunosuppressive mechanism. Our study revealed the presence of racially distinct tumor-promoting and immunosuppressive microenvironments in AA and EA patients with TNBC, which may explain the poor clinical outcomes.

2.
Nat Commun ; 15(1): 1373, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355560

RESUMO

SMARCB1 loss has long been observed in many solid tumors. However, there is a need to elucidate targetable pathways driving growth and metastasis in SMARCB1-deficient tumors. Here, we demonstrate that SMARCB1 deficiency, defined as genomic SMARCB1 copy number loss associated with reduced mRNA, drives disease progression in patients with bladder cancer by engaging STAT3. SMARCB1 loss increases the chromatin accessibility of the STAT3 locus in vitro. Orthotopically implanted SMARCB1 knockout (KO) cell lines exhibit increased tumor growth and metastasis. SMARCB1-deficient tumors show an increased IL6/JAK/STAT3 signaling axis in in vivo models and patients. Furthermore, a pSTAT3 selective inhibitor, TTI-101, reduces tumor growth in SMARCB1 KO orthotopic cell line-derived xenografts and a SMARCB1-deficient patient derived xenograft model. We have identified a gene signature generated from SMARCB1 KO tumors that predicts SMARCB1 deficiency in patients. Overall, these findings support the clinical evaluation of STAT3 inhibitors for the treatment of SMARCB1-deficient bladder cancer.


Assuntos
Interleucina-6 , Neoplasias da Bexiga Urinária , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Transdução de Sinais/genética , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
3.
Am J Clin Exp Urol ; 11(6): 594-612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148936

RESUMO

Prostate cancer (PCa) is the second most common cancer and constitutes about 14.7% of total cancer cases. PCa is highly prevalent and more aggressive in African-American (AA) men than in European-American (EA) men. PCa tends to be highly heterogeneous, and its complex biology is not fully understood. We use metabolomics to better understand the mechanisms behind PCa progression and disparities in its clinical outcome. Adenosine deaminase (ADA) is a key enzyme in the purine metabolic pathway; it was found to be upregulated in PCa and is associated with higher-grade PCa and poor disease-free survival. The inosine-to-adenosine ratio, which is a surrogate for ADA activity was high in PCa patient urine and higher in AA PCa compared to EA PCa. To understand the significance of high ADA in PCa, we established ADA overexpression models and performed various in vitro and in vivo studies. Our studies have revealed that an acute increase in ADA expression during later stages of tumor development enhances in vivo growth in multiple pre-clinical models. Further analysis revealed that mTOR signaling activation could be associated with this tumor growth. Chronic ADA overexpression shows alterations in the cells' adhesion machinery and a decrease in cells' ability to adhere to the extracellular matrix in vitro. Losing cell-matrix interaction is critical for metastatic dissemination which suggests that ADA could potentially be involved in promoting metastasis. This is supported by the association of higher ADA expression with higher-grade tumors and poor patient survival. Overall, our findings suggest that increased ADA expression may promote PCa progression, specifically tumor growth and metastatic dissemination.

5.
Cancer Res Commun ; 3(7): 1366-1377, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37501682

RESUMO

NF1 is a key tumor suppressor that represses both RAS and estrogen receptor-α (ER) signaling in breast cancer. Blocking both pathways by fulvestrant (F), a selective ER degrader, together with binimetinib (B), a MEK inhibitor, promotes tumor regression in NF1-depleted ER+ models. We aimed to establish approaches to determine how NF1 protein levels impact B+F treatment response to improve our ability to identify B+F sensitive tumors. We examined a panel of ER+ patient-derived xenograft (PDX) models by DNA and mRNA sequencing and found that more than half of these models carried an NF1 shallow deletion and generally have low mRNA levels. Consistent with RAS and ER activation, RET and MEK levels in NF1-depleted tumors were elevated when profiled by mass spectrometry (MS) after kinase inhibitor bead pulldown. MS showed that NF1 can also directly and selectively bind to palbociclib-conjugated beads, aiding quantification. An IHC assay was also established to measure NF1, but the MS-based approach was more quantitative. Combined IHC and MS analysis defined a threshold of NF1 protein loss in ER+ breast PDX, below which tumors regressed upon treatment with B+F. These results suggest that we now have a MS-verified NF1 IHC assay that can be used for patient selection as a complement to somatic genomic analysis. Significance: A major challenge for targeting the consequence of tumor suppressor disruption is the accurate assessment of protein functional inactivation. NF1 can repress both RAS and ER signaling, and a ComboMATCH trial is underway to treat the patients with binimetinib and fulvestrant. Herein we report a MS-verified NF1 IHC assay that can determine a threshold for NF1 loss to predict treatment response. These approaches may be used to identify and expand the eligible patient population.


Assuntos
Neoplasias da Mama , Proteogenômica , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neurofibromina 1/genética , Fulvestranto/farmacologia , Receptores de Estrogênio/genética , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição NFI , RNA Mensageiro , Quinases de Proteína Quinase Ativadas por Mitógeno
6.
DNA Repair (Amst) ; 128: 103529, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37390674

RESUMO

DNA adducts and strand breaks are induced by various exogenous and endogenous agents. Accumulation of DNA damage is implicated in many disease processes, including cancer, aging, and neurodegeneration. The continuous acquisition of DNA damage from exogenous and endogenous stressors coupled with defects in DNA repair pathways contribute to the accumulation of DNA damage within the genome and genomic instability. While mutational burden offers some insight into the level of DNA damage a cell may have experienced and subsequently repaired, it does not quantify DNA adducts and strand breaks. Mutational burden also infers the identity of the DNA damage. With advances in DNA adduct detection and quantification methods, there is an opportunity to identify DNA adducts driving mutagenesis and correlate with a known exposome. However, most DNA adduct detection methods require isolation or separation of the DNA and its adducts from the context of the nuclei. Mass spectrometry, comet assays, and other techniques precisely quantify lesion types but lose the nuclear context and even tissue context of the DNA damage. The growth in spatial analysis technologies offers a novel opportunity to leverage DNA damage detection with nuclear and tissue context. However, we lack a wealth of techniques capable of detecting DNA damage in situ. Here, we review the limited existing in situ DNA damage detection methods and examine their potential to offer spatial analysis of DNA adducts in tumors or other tissues. We also offer a perspective on the need for spatial analysis of DNA damage in situ and highlight Repair Assisted Damage Detection (RADD) as an in situ DNA adduct technique with the potential to integrate with spatial analysis and the challenges to be addressed.


Assuntos
Adutos de DNA , Neoplasias , Humanos , Dano ao DNA , Reparo do DNA , Mutagênese , Neoplasias/genética
7.
Nat Commun ; 14(1): 3357, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296155

RESUMO

The testicular androgen biosynthesis is well understood, however, how cancer cells gauge dwindling androgen to dexterously initiate its de novo synthesis remained elusive. We uncover dual-phosphorylated form of sterol regulatory element-binding protein 1 (SREBF1), pY673/951-SREBF1 that acts as an androgen sensor, and dissociates from androgen receptor (AR) in androgen deficient environment, followed by nuclear translocation. SREBF1 recruits KAT2A/GCN5 to deposit epigenetic marks, histone H2A Lys130-acetylation (H2A-K130ac) in SREBF1, reigniting de novo lipogenesis & steroidogenesis. Androgen prevents SREBF1 nuclear translocation, promoting T cell exhaustion. Nuclear SREBF1 and H2A-K130ac levels are significantly increased and directly correlated with late-stage prostate cancer, reversal of which sensitizes castration-resistant prostate cancer (CRPC) to androgen synthesis inhibitor, Abiraterone. Further, we identify a distinct CRPC lipid signature resembling lipid profile of prostate cancer in African American (AA) men. Overall, pY-SREBF1/H2A-K130ac signaling explains cancer sex bias and reveal synchronous inhibition of KAT2A and Tyr-kinases as an effective therapeutic strategy.


Assuntos
Androgênios , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Androgênios/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Histonas/metabolismo , Acetilação , Linhagem Celular Tumoral , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Lipídeos
8.
J Hypertens ; 41(6): 979-994, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071431

RESUMO

BACKGROUND: Hypertension is the largest risk factor affecting global mortality. Despite available medications, uncontrolled hypertension is on the rise, whereby there is an urgent need to develop novel and sustainable therapeutics. Because gut microbiota is now recognized as an important entity in blood pressure regulation, one such new avenue is to target the gut-liver axis wherein metabolites are transacted via host-microbiota interactions. Knowledge on which metabolites within the gut-liver axis regulate blood pressure is largely unknown. METHOD: To address this, we analyzed bile acid profiles of human, hypertensive and germ-free rat models and report that conjugated bile acids are inversely correlated with blood pressure in humans and rats. RESULTS: Notably intervening with taurine or tauro-cholic acid rescued bile acid conjugation and reduced blood pressure in hypertensive rats. Subsequently, untargeted metabolomics uncovered altered energy metabolism following conjugation of bile acids as a mechanism alleviating high blood pressure. CONCLUSION: Together this work reveals conjugated bile acids as nutritionally re-programmable anti-hypertensive metabolites.


Assuntos
Anti-Hipertensivos , Hipertensão , Ratos , Humanos , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Ácidos e Sais Biliares/metabolismo , Fígado , Taurina/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo
10.
Cells ; 11(15)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954173

RESUMO

Prostate cancer (PCa) is the second most diagnosed cancer in the United States and is associated with metabolic reprogramming and significant disparities in clinical outcomes among African American (AA) men. While the cause is likely multi-factorial, the precise reasons for this are unknown. Here, we identified a higher expression of the metabolic enzyme UGT2B28 in localized PCa and metastatic disease compared to benign adjacent tissue, in AA PCa compared to benign adjacent tissue, and in AA PCa compared to European American (EA) PCa. UGT2B28 was found to be regulated by both full-length androgen receptor (AR) and its splice variant, AR-v7. Genetic knockdown of UGT2B28 across multiple PCa cell lines (LNCaP, LAPC-4, and VCaP), both in androgen-replete and androgen-depleted states resulted in impaired 3D organoid formation and a significant delay in tumor take and growth rate of xenograft tumors, all of which were rescued by re-expression of UGT2B28. Taken together, our findings demonstrate a key role for the UGT2B28 gene in promoting prostate tumor growth.


Assuntos
Androgênios , Glucuronosiltransferase/metabolismo , Neoplasias da Próstata , Negro ou Afro-Americano/genética , Humanos , Masculino , Processos Neoplásicos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Difosfato de Uridina
11.
Cancers (Basel) ; 14(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35205762

RESUMO

African Americans (AA) are two times more likely to be diagnosed with and succumb to prostate cancer (PCa) compared to European Americans (EA). There is mounting evidence that biological differences in these tumors contribute to disparities in patient outcomes. Our goal was to examine the differences in DNA damage in AA and EA prostate tissues. Tissue microarrays with matched tumor-benign adjacent pairs from 77 AA and EA PCa patients were analyzed for abasic sites, oxidative lesions, crosslinks, and uracil content using the Repair Assisted Damage Detection (RADD) assay. Our analysis revealed that AA PCa, overall, have more DNA damage than EA PCa. Increased uracil and pyrimidine lesions occurred in AA tumors, while EA tumors had more oxidative lesions. AA PCa have higher levels of UMP and folate cycle metabolites than their EA counterparts. AA PCa showed higher levels of UNG, the uracil-specific glycosylase, than EA, despite uracil lesions being retained within the genome. AA patients also had lower levels of the base excision repair protein XRCC1. These results indicate dysfunction in the base excision repair pathway in AA tumors. Further, these findings reveal how metabolic rewiring in AA PCa drives biological disparities and identifies a targetable axis for cancer therapeutics.

12.
Diabetes ; 70(10): 2419-2429, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34344789

RESUMO

Genetic analysis of an adult patient with an unusual course of ketosis-prone diabetes (KPD) and lacking islet autoantibodies demonstrated a nucleotide variant in the 5'-untranslated region (UTR) of PDX1, a ß-cell development gene. When differentiated to the pancreatic lineage, his induced pluripotent stem cells stalled at the definitive endoderm (DE) stage. Metabolomics analysis of the cells revealed that this was associated with leucine hypersensitivity during transition from the DE to the pancreatic progenitor (PP) stage, and RNA sequencing showed that defects in leucine-sensitive mTOR pathways contribute to the differentiation deficiency. CRISPR/Cas9 manipulation of the PDX1 variant demonstrated that it is necessary and sufficient to confer leucine sensitivity and the differentiation block, likely due to disruption of binding of the transcriptional regulator NFY to the PDX1 5'-UTR, leading to decreased PDX1 expression at the early PP stage. Thus, the combination of an underlying defect in leucine catabolism characteristic of KPD with a functionally relevant heterozygous variant in a critical ß-cell gene that confers increased leucine sensitivity and inhibits endocrine cell differentiation resulted in the phenotype of late-onset ß-cell failure in this patient. We define the molecular pathogenesis of a diabetes syndrome and demonstrate the power of multiomics analysis of patient-specific stem cells for clinical discovery.


Assuntos
Diabetes Mellitus Tipo 1/etiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Secretoras de Insulina/fisiologia , Adulto , Diferenciação Celular , Células Cultivadas , Análise Mutacional de DNA , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células Secretoras de Insulina/patologia , Masculino , Pâncreas/citologia , Pâncreas/metabolismo , Pâncreas/patologia , Síndrome , Transativadores/genética , Transativadores/metabolismo
13.
Metabolites ; 12(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35050130

RESUMO

African-American (AA) men are more than twice as likely to die of prostate cancer (PCa) than European American (EA) men. Previous in silico analysis revealed enrichment of altered lipid metabolic pathways in pan-cancer AA tumors. Here, we performed global unbiased lipidomics profiling on 48 matched localized PCa and benign adjacent tissues (30 AA, 24 ancestry-verified, and 18 EA, 8 ancestry verified) and quantified 429 lipids belonging to 14 lipid classes. Significant alterations in long chain polyunsaturated lipids were observed between PCa and benign adjacent tissues, low and high Gleason tumors, as well as associated with early biochemical recurrence, both in the entire cohort, and within AA patients. Alterations in cholesteryl esters, and phosphatidyl inositol classes of lipids delineated AA and EA PCa, while the levels of lipids belonging to triglycerides, phosphatidyl glycerol, phosphatidyl choline, phosphatidic acid, and cholesteryl esters distinguished AA and EA PCa patients with biochemical recurrence. These first-in-field results implicate lipid alterations as biological factors for prostate cancer disparities.

14.
Prostate ; 81(1): 58-71, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022812

RESUMO

BACKGROUND: Nerves are key factors in prostate cancer (PCa) progression. Here, we propose that neuropeptide Y (NPY) nerves are key regulators of cancer-nerve interaction. METHODS: We used in vitro models for NPY inhibition studies and subsequent metabolomics, apoptotic and migration assays, and nuclear transcription factor-κB (NF-κB) translocation studies. Human naïve and radiated PCa tissues were used for NPY nerve density biomarker studies. Tissues derived from a Botox denervation clinical trial were used to corroborate metabolomic changes in humans. RESULTS: Cancer cells increase NPY positive nerves in vitro and in preneoplastic human tissues. NPY-specific inhibition resulted in increased cancer apoptosis, decreased motility, and energetic metabolic pathway changes. A comparison of metabolomic response in NPY-inhibited cells with the transcriptome response in human PCa patients treated with Botox showed shared 13 pathways, including the tricarboxylic acid cycle. We identified that NF-κB is a potential NPY downstream mediator. Using in vitro models and tissues derived from a previous human chemical denervation study, we show that Botox specifically, but not exclusively, inhibits NPY in cancer. Quantification of NPY nerves is independently predictive of PCa-specific death. Finally, NPY nerves might be involved in radiation therapy (RT) resistance, as radiation-induced apoptosis is reduced when PCa cells are cocultured with dorsal root ganglia/nerves and NPY positive nerves are increased in prostates of patients that failed RT. CONCLUSION: These data suggest that targeting the NPY neural microenvironment may represent a therapeutic approach for the treatment of PCa and resistance through the regulation of multiple oncogenic mechanisms.


Assuntos
Neuropeptídeo Y/metabolismo , Neoplasias da Próstata/radioterapia , Adolescente , Adulto , Fatores Etários , Animais , Apoptose/efeitos da radiação , Axônios/metabolismo , Axônios/efeitos da radiação , Toxinas Botulínicas Tipo A/farmacologia , Carcinogênese , Linhagem Celular Tumoral , Criança , Humanos , Masculino , Metaboloma , Camundongos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Sistema Nervoso/metabolismo , Sistema Nervoso/patologia , Sistema Nervoso/efeitos da radiação , Neuropeptídeo Y/antagonistas & inibidores , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Tolerância a Radiação , Transcriptoma , Adulto Jovem
15.
Oncogene ; 39(40): 6387-6392, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32820250

RESUMO

After publication of this Article, the Authors noticed errors in some of the Figures. In Figures 2e, 2f-g, 4a, 4j, 5a and 6b, unmatched ß-actin was inadvertently used as loading control for the immunoblots. These have been corrected using repeat data from a similar set of samples and the revised Figures containing matched ß-actin and their respective quantification data are included below. In Figure 7a, the same image was inadvertently used to represent tumors 3 and 5 in the control group. This error has been corrected using original images of tumors 3 and 5 in the control group. Additional corrections have been made in the Article and Figure legends to enhance the clarity of the description. NAD was replaced by NADP. NAD/NADP was replaced by NADP/NADPH. The description of the antibody source and dilution for the antigens PFKFB4 (Abcam, 1:1000), G6PD, and HK1 (Cell Signaling, 1:1,000) have been included in the Methods section for Western Blot. The legend for Figure 4e and 4j has been updated. The HTML and PDF versions of this Article have been corrected. The scientific conclusions of this paper have not been affected.

18.
Blood ; 135(11): 845-856, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31932841

RESUMO

Mutations in the epigenetic regulators DNMT3A and IDH1/2 co-occur in patients with acute myeloid leukemia and lymphoma. In this study, these 2 epigenetic mutations cooperated to induce leukemia. Leukemia-initiating cells from Dnmt3a-/- mice that express an IDH2 neomorphic mutant have a megakaryocyte-erythroid progenitor-like immunophenotype, activate a stem-cell-like gene signature, and repress differentiated progenitor genes. We observed an epigenomic dysregulation with the gain of repressive H3K9 trimethylation and loss of H3K9 acetylation in diseased mouse bone marrow hematopoietic stem and progenitor cells (HSPCs). HDAC inhibitors rapidly reversed the H3K9 methylation/acetylation imbalance in diseased mouse HSPCs while reducing the leukemia burden. In addition, using targeted metabolomic profiling for the first time in mouse leukemia models, we also showed that prostaglandin E2 is overproduced in double-mutant HSPCs, rendering them sensitive to prostaglandin synthesis inhibition. These data revealed that Dnmt3a and Idh2 mutations are synergistic events in leukemogenesis and that HSPCs carrying both mutations are sensitive to induced differentiation by the inhibition of both prostaglandin synthesis and HDAC, which may reveal new therapeutic opportunities for patients carrying IDH1/2 mutations.


Assuntos
Transformação Celular Neoplásica/genética , DNA (Citosina-5-)-Metiltransferases/genética , Neoplasias Hematológicas/genética , Hematopoese/genética , Isocitrato Desidrogenase/genética , Mutação , Animais , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Sequenciamento de Cromatina por Imunoprecipitação , Metilação de DNA , DNA Metiltransferase 3A , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Histonas/metabolismo , Humanos , Metaboloma , Metabolômica/métodos , Camundongos , Camundongos Knockout
19.
Oncogene ; 39(40): 6265-6285, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31383940

RESUMO

Advanced Bladder Cancer (BLCA) remains a clinical challenge that lacks effective therapeutic measures. Here, we show that distinct, stage-wise metabolic alterations in BLCA are associated with the loss of function of aldehyde oxidase (AOX1). AOX1 associated metabolites have a high predictive value for advanced BLCA and our findings demonstrate that AOX1 is epigenetically silenced during BLCA progression by the methyltransferase activity of EZH2. Knockdown (KD) of AOX1 in normal bladder epithelial cells re-wires the tryptophan-kynurenine pathway resulting in elevated NADP levels which may increase metabolic flux through the pentose phosphate (PPP) pathway, enabling increased nucleotide synthesis, and promoting cell invasion. Inhibition of NADP synthesis rescues the metabolic effects of AOX1 KD. Ectopic AOX1 expression decreases NADP production, PPP flux and nucleotide synthesis, while decreasing invasion in cell line models and suppressing growth in tumor xenografts. Further gain and loss of AOX1 confirm the EZH2-dependent activation, metabolic deregulation, and tumor growth in BLCA. Our findings highlight the therapeutic potential of AOX1 and provide a basis for the development of prognostic markers for advanced BLCA.


Assuntos
Aldeído Oxidase/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias da Bexiga Urinária/genética , Bexiga Urinária/patologia , Aldeído Oxidase/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Cinurenina/metabolismo , Masculino , Metabolômica , Camundongos , NADP/metabolismo , Invasividade Neoplásica , Estadiamento de Neoplasias , Nucleotídeos/biossíntese , Via de Pentose Fosfato/genética , RNA-Seq , Análise Serial de Tecidos , Triptofano/metabolismo , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Oncogene ; 39(15): 3089-3101, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31308490

RESUMO

An improved understanding of the biochemical alterations that accompany tumor progression and metastasis is necessary to inform the next generation of diagnostic tools and targeted therapies. Metabolic reprogramming is known to occur during the epithelial-mesenchymal transition (EMT), a process that promotes metastasis. Here, we identify metabolic enzymes involved in extracellular matrix remodeling that are upregulated during EMT and are highly expressed in patients with aggressive mesenchymal-like breast cancer. Activation of EMT significantly increases production of hyaluronic acid, which is enabled by the reprogramming of glucose metabolism. Using genetic and pharmacological approaches, we show that depletion of the hyaluronic acid precursor UDP-glucuronic acid is sufficient to inhibit several mesenchymal-like properties including cellular invasion and colony formation in vitro, as well as tumor growth and metastasis in vivo. We found that depletion of UDP-glucuronic acid altered the expression of PPAR-gamma target genes and increased PPAR-gamma DNA-binding activity. Taken together, our findings indicate that the disruption of EMT-induced metabolic reprogramming affects hyaluronic acid production, as well as associated extracellular matrix remodeling and represents pharmacologically actionable target for the inhibition of aggressive mesenchymal-like breast cancer progression.


Assuntos
Neoplasias da Mama/patologia , Ácido Hialurônico/biossíntese , Uridina Difosfato Glucose Desidrogenase/metabolismo , Animais , Mama/patologia , Linhagem Celular Tumoral , Embrião de Galinha , Membrana Corioalantoide , Progressão da Doença , Transição Epitelial-Mesenquimal , Matriz Extracelular/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , PPAR gama/metabolismo , RNA-Seq , Análise Serial de Tecidos , Uridina Difosfato Glucose Desidrogenase/genética , Uridina Difosfato Ácido Glucurônico/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...